Polynomial Fitting of Data Streams with Applications to Codeword Testing
نویسندگان
چکیده
Given a stream of (x, y) points, we consider the problem of finding univariate polynomials that best fit the data. Over finite fields, this problem encompasses the well-studied problem of decoding Reed-Solomon codes while over the reals it corresponds to the well-studied polynomial regression problem. We present one-pass algorithms for two natural problems: i) find the polynomial of a given degree k that minimizes the error and ii) find the polynomial of smallest degree that interpolates through the points with at most a given error bound. We consider a range of error models including the average error per point, the maximum error, and the number of points that are not fitted exactly. Many of our results apply to both the reals and finite fields. As a consequence we also solve an open question regarding the tolerant testing of codes in the data stream model.
منابع مشابه
Argument of knowledge of a bounded error
A protocol is introduced to show knowledge of a codeword of Goppa code and Goppa polynomial. Protocol does not disclosure any useful information about the codeword and polynomial coefficients. A related protocol is introduced to show Hamming weight of an error is below a threshold. Protocol does not disclosure codeword and weight of the error. Verifier only uses commitments to codeword componen...
متن کاملMining Frequent Patterns in Uncertain and Relational Data Streams using the Landmark Windows
Todays, in many modern applications, we search for frequent and repeating patterns in the analyzed data sets. In this search, we look for patterns that frequently appear in data set and mark them as frequent patterns to enable users to make decisions based on these discoveries. Most algorithms presented in the context of data stream mining and frequent pattern detection, work either on uncertai...
متن کاملUsing Wavelets and Splines to Forecast Non-Stationary Time Series
This paper deals with a short term forecasting non-stationary time series using wavelets and splines. Wavelets can decompose the series as the sum of two low and high frequency components. Aminghafari and Poggi (2007) proposed to predict high frequency component by wavelets and extrapolate low frequency component by local polynomial fitting. We propose to forecast non-stationary process u...
متن کاملgH-differentiable of the 2th-order functions interpolating
Fuzzy Hermite interpolation of 5th degree generalizes Lagrange interpolation by fitting a polynomial to a function f that not only interpolates f at each knot but also interpolates two number of consecutive Generalized Hukuhara derivatives of f at each knot. The provided solution for the 5th degree fuzzy Hermite interpolation problem in this paper is based on cardinal basis functions linear com...
متن کاملNonparametric Regression Estimation under Kernel Polynomial Model for Unstructured Data
The nonparametric estimation(NE) of kernel polynomial regression (KPR) model is a powerful tool to visually depict the effect of covariates on response variable, when there exist unstructured and heterogeneous data. In this paper we introduce KPR model that is the mixture of nonparametric regression models with bootstrap algorithm, which is considered in a heterogeneous and unstructured framewo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011